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Fimasartan ameliorates renal ischemia reperfusion injury  
via modulation of  oxidative stress, inflammatory  
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ABSTRACT
Ischemia-reperfusion injury (IRI) can be defined as changes in the functions and struc-
tures of  the tissues resulting from the restoration of  blood after a period of  ischemia. 
This study aimed to assess the potential protective effect of  Fimasartan (angiotensin 
receptor antagonist) in the bilateral renal IRI in male rats through its potential effect 
on renal functions, modulation of  the inflammatory cascade, oxidative stress, and 
apoptotic effect. The animals were equally assigned into four groups. The sham (neg-
ative control) group was exposed to surgical conditions without induction of  IRI. The 
control group was exposed to ischemia by occluding the renal pedicles by clamps for 
30 min, followed by restoration of  blood for 2h. The vehicle-treated group received 
dimethyl sulfoxide (DMSO) by intraperitoneal injection (IP) 30 minutes before clamp-
ing. Fimasartan-treated group: rats pretreated with Fimasartan a dose of  3 mg/kg IP; 
this was half  hour before occluding the renal pedicles. Animals were then exposed to 
30 min ischemia (clamping the renal pedicles) followed by 2h reperfusion by releasing 
the clamps. Blood samples were collected to examine the levels of  serum urea and cre-
atinine. Renal tissue was used to measure the levels of  cytokines (TNFα, IL-6) and total 
antioxidant capacity (TAC). Immunohistochemistry was used to assess the levels of  Bax, 
caspase 3, and Bcl-2. Histopathological analyses were performed to detect the paren-
chymal injury. The present study shows that pretreatment with Fimasartan improves 
kidney function through its effects on oxidative stress, cytokines, and apoptotic markers.
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INTRODUCTION

Ischemia-reperfusion injury (IRI) is a pathological condition in the ischemic tissues that suffer from a low blood supply followed by 
reestablishment of  blood flow resulting in further organ damage [1]. Blood flow restoration following ischemia causes a serious cell 
injury, including production of  the reactive oxygen species (ROS), inflammatory responses, oxidative stress, and apoptosis [2, 3]. IRI 
deteriorates many organs, particularly the kidney, resulting in increased mortality rate injury. IRI is considered a major contributor to 
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chronic renal failure and end-stage renal failure. Different conditions in which the kidneys are exposed to IRI include vascular and 
cardiac surgery, chronic renal artery stenosis, embolism trauma, atherosclerosis, and kidney transplantation [4–6]. More than 60% of  
patients with acute kidney injury (AKI) are due to IRI or acute tubular necrosis [7]. Annually, more than 1.5 million individuals die 
because of  AKI, thereby discovering new therapeutic agents with low adverse effects can save the life of  these patients [8]. Further-
more, AKI causes a long stay in hospitals, resulting in pressure on the health care providers and an economic burden on health services 
[9]. Multiple molecular mechanisms underpin the renal IRI, including the inflammatory responses initiated by various inflammatory 
molecules such as cytokines, chemokines, and increased expression of  adhesion molecules leading to tissue necrosis [10]. Immune cells 
play a critical role in the inflammation response by secreting the TNF-α responsible for regulating a variety of  immune, inflammatory 
and hematopoietic responses [11]. In AKI, the inflammatory response is critical, resulting in an induction of  IL-6; therefore, IL-6 can 
be a useful target in AKI through modulating its effect [12–15]. ROS is another factor playing a critical role in deteriorating the case 
scenario of  IRI as they are released in both phases resulting in deterioration of  the affected tissues. Accumulation of  ROS causes a state 
of  imbalance, leading to tissue hypoxia and intracellular acidosis due to the generation of  lactate. 

Furthermore, excessive increase of  ROS is also because of  the decreased activity of  a variety of  antioxidant molecules such as superox-
ide dismutase, catalase, and glutathione peroxidase. These events influence the mitochondrial respiratory chain activity and burst ROS, 
resulting in oxidative damage to the bimolecular, including proteins, lipids, and DNA, ending in apoptosis and cell death [16]. Apoptosis 
occurs in response to hypoxic stress, resulting from ischemia and ROS production from reperfusion [17]. This stress can initiate both 
apoptosis pathways, including the intrinsic and extrinsic mechanisms [6]. Bax and Bcl2 are apoptotic regulators that are key players of  
IRI apoptosis. Bcl2 has an anti-apoptotic effect resulting in inhibition of  the cell apoptosis via antagonizing the mitochondrial mem-
brane permeability. The apoptotic impact of  Bax releases a variety of  cytokines, thereby inducing cell apoptosis [18, 19]. Caspase 3 is 
an executioner caspase-activated by initiator caspase to cleave a wide spectrum of  cellular proteins [20]. Fimasartan is an angiotensin II 
receptor blocker (ARB) representing the latest drug from the ARB group [21, 22]. It is licensed in some countries, for example, in Korea 
by the Korea Food and Drug Administration, to treat hypertension [21]. 

Fimasartan was developed by Boryung Pharmaceutical, a Korean company, and received approval in many other countries such as 
China, Singapore, Russia, and India. It has a safety profile, efficacy, and tolerability; it has good properties compared to other ARBs, 
in addition to pleiotropic effects [22]. In general, ARBs represent the highly used antihypertensive drugs and the first recommended 
class according to American and European guidelines [23]. In recent studies, Fimasartan has been found to provide therapeutic action 
in patients suffering from acute coronary syndrome by decreasing inflammation of  the carotid atherosclerotic plaque [24]. Particularly 
the Renin angiotensin aldosterone system (RAAS) modulates the inflammatory process and plays a significant role in causing renal IRI 
by different effecting mechanisms [25–26]. Especially, Ang II mediates the oxidative condition, inflammatory cascade, and apoptosis 
of  renal tissue [27–29].

MATERIALS AND METHODS

Animal maintenance, preparation, treatment, and sacrifice

Animals were fed in a standard laboratory in the animal house of  the Faculty of  Science, University of  Kufa. All experiments were 
performed in the laboratory of  the Department of  Pharmacology and Therapeutics and Middle Euphrates Unit for Cancer Research, 
Faculty of  Medicine, University of  Kufa, Najaf, Iraq. All procedures were reviewed by the Institutional Animal Care and Use Committee 
(IACUC), University of  Kufa, Najaf, Iraq.

Experimental design

Wistar albino rats were between eight and twelve weeks and weighted 220–260 gm. Animals were assigned to four groups (5 animals in 
each group). Sham (negative control group) was subjected to the same operation without ischemia and reperfusion. The control group 
was subjected to ischemia for 30 min and 2h reperfusion [30–31]. The vehicle-treated group was pretreated with dimethyl sulfoxide 
(DMSO) 30 min prior to the induction of  ischemia and reperfusion [31]. Fimasartan group was treated with Fimasartan (3 mg/kg) 
30 min before the induction of  ischemia and reperfusion [32].

Induction of renal IRI

Animals were anesthetized by intraperitoneal injection with ketamine (100 mg/kg) and xylazine (10 mg/kg). To ensure that animals 
were anesthetized, reflex monitoring, including tail and leg pinching, was performed [33]. A midline incision was performed, and two 
renal pedicles were occluded for 30 min using clamps. At the time of  ischemia, animals were maintained at 37°C using a heating pad. 
After 30 min of  ischemia, the clamps were released, allowing the blood to resort for 2h and closing the abdomen. Normal saline (1 ml) 
was immediately injected into the animals to maintain fluid balance [34]. When the experiment ended, animals were sacrificed, and the 
left kidney was removed. The renal tissues were excised into two parts; the frozen one was used for the tissue assessment of  cytokines and 
antioxidant readouts. The second part was put in 10% formalin for histopathological and immunohistochemistry analysis.
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Fimasartan preparation

Fimasartan was from Med Chem Express, USA Company. Molecular Formula: C27H31N7OS, Chemical Names: Fimasartan (BR-A-657), 
CAS.NO 247257-48-3. To prepare the drug, the powder was dissolved in DMSO and immediately used.

Assessment of the renal function

The blood was collected from the heart and put in test tubes for 30 min to clot at room temperature. The blood samples were centri-
fuged at 3000 rpm for 15 min. The supernatant was collected and used to assess the levels of  urea and creatinine using commercial kits. 

IL-6, TNF-α and total antioxidant capacity (TAC) measurement in kidney using ELISA

To measure the cytokines and antioxidant markers in the renal tissues, the frozen part of  the kidney was washed with cold PBS to re-
move the blood. The renal tissue was weighted, and PBS containing 1% Triton X-100 and 1% protease cocktail inhibitor was added 
to the tissue in a ratio of  1:9 W/V, using an appropriate test tube. The samples were homogenized using an ultrasonic liquid processor 
[35]. The samples were spun down at 3000 rpm for 20 min at 4°C. The supernatant was used to measure the levels of  TNFα, IL-6, and 
TAC using ELISA (Bioassay Technology Laboratory, China).

Tissue preparation for histopathology

The renal tissue in the formalin was washed with cold normal saline to remove the clots. The tissue was processed in paraffin blocks. The 
tissue sections included the renal cortex and pelvis. Slices of  5 µM thickness were cut and stained with hematoxylin and eosin stain. The 
changes in the renal tissues were investigated and included the following: cellular swelling, eosinophilic cast, tubular dilation, develop-
ment of  proteinaceous cast, desquamation of  epithelial cells, inflammatory cells infiltration, and necrosis [36]. The renal tissue was inves-
tigated using a microscope with magnification lenses from 100 to 400X. The investigation was performed by an independent pathologist 
unaware of  the experimental groups. Histopathological changes were scored from 0 to 4 according to the percentages of  affected tubules 
as follow: the normal tissue was assigned 0, score 1: less than 25%, score 2: 25–50%, score 3: 50–75% and score 4: 75–100% [37].

Immunohistochemistry (IHC) study

To measure the levels of  BAX, Bcl-2, and caspase 3 in the renal tissue, immunohistochemistry analysis was used. The immunostaining 
was performed in the paraffin-embedded tissue sections (5 µM thickness). Briefly, the sections were deparaffinized, and the endogenous 
peroxidase activity was blocked using 3% (v/v). Non-specific binding sites can be reduced by incubating the tissue sections in serum-free 
proteins. The tissue sections were incubated overnight at 4°C with primary antibodies purchased from the Bioassay Technology 
Laboratory against BAX (1:100), Bcl-2 (1:100), or caspase 3 (1:100). The sections were then washed for 1h and incubated with a bioti-
nylated secondary antibody for 30 min at 37°C. The tissue sections were then washed and incubated with horseradish peroxidase for 
30 min followed by incubation with chromogen for 15 min (100 µL per slide). The tissue sections were then counterstained with hema-
toxylin [38]. The immunostaining of  the BAX, Bcl-2, and caspase 3 was quantified using a Q-score system in which the scores were 
calculated by multiplying the immunostaining intensity and positive stain area. The labeling intensity was graded as follows: score 0: no 
staining, score 1: weak staining, score 2: moderate staining, and score 3: strong staining. The stained cells were represented as percentag-
es ranging from 0–100% [39]. An independent pathologist unaware of  the study design investigated the immunostained tissue sections. 

Statistical analysis

SPSS software version 26.0 was used to analyze the data. The results were represented as mean±SEM unless otherwise stated. Analysis 
of  variance (ANOVA) was used to compare the groups, followed by a post hoc test [40]. Finally, the Kruskal-Wallis test was used to 
assess the mean differences among the study groups in terms of  morphological changes and immunohistochemistry. In this study, the 
P≤0.05 is considered statistically significant. 

RESULTS

Influence of Fimasartan on renal function

The results showed that serum urea and creatinine levels were higher in control and vehicle-treated groups than in sham groups. In 
contrast, pretreatment with Fimasartan resulted in a marked decrease in serum urea and creatinine levels compared to the control and 
vehicle-treated, Figures 1 and 2.
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Influence of Fimasartan on oxidative stress in the kidney (TAC)

The data in control and vehicle-treated groups showed a dramatic decrease in the levels of  renal (TAC) compared to the sham group 
(Figure 3). On the other hand, pretreatment with Fimasartan resulted in a marked elevation in TAC levels compared to the control and 
vehicle-treated groups (Figure 3).

Influence of Fimasartan on renal cytokines (TNFα, IL-6)

The levels of  TNFα and IL-6 in the kidney for the control and vehicle-treated groups increased significantly compared to the sham 
group. By contrast, these levels significantly dropped in the Fimasartan-treated group versus the control and vehicle-treated groups 
(Figure 4).

Figure 1. Mean level of serum urea among the groups. Data are represented as mean±SEM, n=5. Statistical analysis was performed using a 
one-way ANOVA followed by a post hoc test. * – P<0.05 compared to the sham group; #– P<0.05 compared to control and vehicle-treated 
groups.

Figure 2. Mean level of serum creatinine among the groups. Data are expressed as mean±SEM, n=5. Statistical analysis was performed 
using a one-way ANOVA followed by a post hoc test. * – P<0.05 compared to the sham group; #– P<0.05 compared to control and vehi-
cle-treated groups.
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Histopathological examination

The score of  damage and morphological changes of  kidneys among the groups were shown in Figures 5 and 6. The renal morphology 
was normal in the sham negative group (Figure 6A). In contrast, the histopathological investigation in the control and vehicle-treated 
groups showed tubular cell swelling, tubular dilation, and damage and degeneration of  tubular structure. Furthermore, there is a cast 
formation and congestion of  the lumen (Figure 6 B and C). Pretreatment with Fimasartan maintained the normal morphology of  renal 
tissue. The treatment effect is characterized by a slight swelling of  the renal tubules with mild interstitial congestion (Figure 6D). 

Immunohistochemistry finding

Influence of Fimasartan on the anti-apoptotic Bcl-2, proapoptotic Bax, and caspase 3

To investigate Bcl-2 expression, Bax, and caspase, immunohistochemistry was used. Q score was used to calculate the intensity of  
labeling of  these molecules. The results showed that pretreatment with Fimasartan caused a marked increase in Q score of  Bcl2 and 
decrease in Q score of  Bax and caspase 3, compared to the control and vehicle-treated groups (Figure 7).

Figure 3. Tissue levels of TACin the kidney (U/ml) among the group. Data are represented as mean±SEM, n=5. Statistical analysis was 
performed using a one-way ANOVA followed by a post hoc test. * – P<0.05 compared to the sham group, # – P<0.05 compared to control 
and vehicle-treated groups.

Figure 4. Mean level of serum creatinine among the groups. Data are expressed as mean±SEM, n=5. Statistical analysis was performed 
using a one-way ANOVA followed by a post hoc test. * – P<0.05 compared to the sham group; #– P<0.05 compared to control and vehi-
cle-treated groups.
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Figure 5. Histopathology scores of the study groups. Statistical analysis was performed using a Kruskal-Wallis test, n=5. * – P<0.05 com-
pared to the sham group; # – P<0.05 compared to control and vehicle-treated groups.

Figure 6. Representative pictures of the renal tissue sections stained with hematoxylin and eosin. A – Sham negative group reveals 
normal morphology; B – Control group reveals cellular swelling, increased cytoplasmic eosinophilic (blue arrow), cast formation (yellow 
arrow); C – Vehicle-treated group shows a cellular injury including swelling, cytoplasmic eosinophilic (blue arrows), and interstitial inflam-
mation (red arrow); D – Fimasartan-treated group showing a slight change in most areas of renal tissue.
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Figure 7. Q score of  BAX, BCL-2, and Caspase 3 staining of the renal tissue among the four groups (N=5). Data are represented as mean±SEM, 
n=5. * – P<0.05 compared to the sham group; # – P<0.05 compared to control and vehicle-treated groups.

Figure 8. Representative pictures of renal tissue sections. A – Sham negative group show positive BCL-2 labeling intensity (indicated by 
arrow); B – Control group showing a negative stain; C – Vehicle-treated group shows negative stain; D – Fimasartan-treated group reveals 
positive labeling intensity BCL-2 (indicated by arrow).

A B

C D
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Figure 9. Representative pictures showing the renal tissue sections of the study groups. A – Sham negative group shows negative Bax 
labeling intensity; B – Control group reveals positive labeling intensity (indicated by arrow); C – Vehicle-treated group shows positive 
labeling intensity (indicated by arrow); D – Fimasartan-treated group showing negative Bax stain.

Influence of Fimasartanon the anti-apoptotic Bcl-2

Renal tissue was probed with anti Bcl2 antibody to investigate the Bcl2 expression. Pretreatment with Fimasartan revealed strong label-
ing intensity (brown color) compared to the control and vehicle-treated groups (Figure 8 A, B, C, and D).

Influence of Fimasartan on Bax

To investigate the expression level of  Bax, the renal tissue was probed with anti-Bax antibody. The tissue sections of  the sham negative 
group and Fimasartan-treated group revealed no staining of  the Bax, (Figure 9 A and D). By contrast, the tissue sections of  the control 
and vehicle-treated groups were stained positively (darkly brown color), Figure 9 B and C.

Influence of Fimasartan on the proapoptotic caspase3

To investigate the expression level of  caspase 3, the renal tissue was probed with an anti-caspase 3 antibody. The tissue sections of  the 
sham negative group and Fimasartan-treatment group revealed no staining of  caspase 3 (Figure 10 A and D). On the other hand, the 
control and vehicle-treated groups were positively stained (brown stain), Figure 10 B and C.

DISCUSSION

The present study demonstrated significantly high urea and creatinine levels in the control and vehicle-treated groups compared to the 
sham group. The observed increase in these markers could be attributed to renal tissue damage and decreased glomerular capacity [33]. 

A

C D
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Figure 10. Representative pictures of the renal tissue sections. A – Sham negative group reveals negative caspase 3 labeling intensity; 
B – Control group reveals positive caspase 3 labeling intensity (brown color); C – Vehicle-treated group shows positive caspase 3 labeling 
intensity; D – Fimasartan-treatment group showing negative caspase 3 labeling intensity.

Pretreatment with Fimasartan reduced the urea and creatinine Fimasartan levels compared to the control and vehicle-treated groups 
highlighting the potential protective effect of  Fimasartan. This finding was also reported by Cho et al. (2018). This result may be ex-
plained by the fact that Fimasartan antagonizes AT1 receptors, thereby reducing the deterioration of  the renal tissue [40, 41]. The his-
topathological findings of  the current study revealed a significantly lower degree of  tissue injury in the Fimasartan-treated group com-
pared to control and vehicle-treated groups. This finding was reported by a previous study [41]. This low degree of  injury by Fimasartan 
treatment is likely to be related to its ability to decrease oxidative stress and inhibit most pro-inflammatory responses [42–45], resulting 
in a decrease in the movement of  the inflammatory cell to ischemic tissue [46]. Prior studies have noted the importance of  TNF-α and 
IL-6 in the molecular pathogenesis of  IRI. The results of  this study indicate that the TNF-α and IL-6 levels were significantly lower 
in the Fimasartan-treatment group than in the control and vehicle-treated group. These results agree with those obtained by Cho et al. 
(2018) [41]. A possible explanation for this might be that Fimasartan could act as an IKK inhibitor, thereby inhibiting the NF-κB. This 
effect could reduce the accumulation and recruitment of  the inflammatory cells in the ischemic tissues [47]. These results reflect those 
of  Lee et al. [48], who found that Fimasartan decreases macrophage number, decreases plague breaking, and enhances plaque stabili-
zation. Shigeoka et al. showed that NLRP3 could signal the injury responses in the renal epithelium [49]. It can thus be suggested that 
pretreatment with Fimasartan inhibits NLRP3 inflammasome and protects the kidney through modulation of  the immune response 
and cytokine response. The present study demonstrated a significantly high level of  TAC in the Fimasartan-treated group in compari-
son to control and vehicle groups. This result agrees with Kim et al. that revealed that Fimasartan significantly increased the antioxidant 
enzyme in unilateral ureteral obstruction in mice by up regulating expression of  the mRNA of  NQO1 and HO-1, the protein expres-
sion of  those genes, as well as of  CuSOD, MnSOD, and catalase [50].

Furthermore, Nezu and Suzuki [51] established the activation of  anti-oxidative transcription factor Nrf2 in the renal tubule, dimin-
ishing the reactive oxygen species protecting them from damage and fibrosis, this mechanism being involved via Fimasartan action 
[52]. The current study showed a marked decrease in apoptotic regulators (Bax and caspase 3) and an increase in levels of  Bcl2 in 
the Fimasartan-treated group compared to the control and vehicle groups. These results are in line with previous studies [53] that 
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