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Background: Clear cell renal cell carcinoma (ccRCC) is a commonly occurring tumor. 
Through a deeper understanding of the immune regulatory mechanisms in the tumor micro-
environment, immunotherapy may serve as a potential treatment for cancer patients. This 
study aimed at identifying the survival-related immune cells and hub genes, which could be 
potential targets for immunotherapy in ccRCC.
Methods: The gene expression profiles and clinical data of ccRCC patients were extracted from 
UCSC Xena and Gene Expression Omnibus (GEO) databases. Kaplan–Meier (KM) survival and 
Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses were utilized to 
select the survival-related tumor-infiltrating immune cells. Multivariate Cox regression was 
utilized to develop a signature based on the tumor-infiltrating immune cells (TIICs). Based on 
the signature, the risk score was calculated, following which the samples were divided into high- 
risk and low-risk groups. Differentially expressed genes (DEGs) between the two risk groups 
were identified. Functional enrichment analysis was performed and cytoHubba plug-in of 
Cytoscape was used to identify the hub genes. Multiple datasets were utilized to validate these 
hub genes, including the Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, 
and the Human Protein Atlas (HPA), and the GEO datasets. Finally, a correlation analysis was 
performed to evaluate the relationship between the hub genes and TIICs.
Results: Four immune survival-related cells, including T cell CD4 memory-activated, T cell 
regulatory (Tregs), eosinophils, and mast cell resting were identified. Nine immune-specific 
hub genes were identified, which included APOE, CASR, CTLA4, CXCL8, EGF, F2, KNG1, 
MMP9, and IL6. Furthermore, these hub genes were significantly correlated with clinical 
traits and closely associated with some TIICs.
Conclusion: A total of four survival-related immune cell types and nine hub genes were 
found to be closely associated with ccRCC. These findings may have implications for the 
development of novel potential immunotherapeutic targets for ccRCC.
Keywords: ccRCC, tumor-infiltrating immune cells, hub genes, TCGA, tumor 
microenvironment

Introduction
Kidney cancer is one of the most commonly diagnosed tumors around the globe.1 

According to the statistics from the World Health Organization, annually, there are 
more than 140,000 RCC-related deaths.2 ccRCC is the most typical subtype of 
kidney cancer and contributes to the majority of kidney cancer-related deaths.3,4 

Until the recent past, the most widely used therapeutic agents were chemotherapy 
and cytokine therapy using interferon-alpha (INFα) and IL-2. However, these 
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therapies produced effective responses only among 
a limited proportion of patients and adverse side effects 
among others.5 Moreover, the overall survival (OS) in 
advanced ccRCC is less than 30%.6,7 Therefore, the devel-
opment of new treatment methods with clinical applicabil-
ity in ccRCC is important.

Tumor microenvironment refers to the highly heteroge-
neous and dynamic tumor-associated network, consisting of 
tumor cells and non-tumor components, including blood ves-
sels, immune cells, adipocytes, and cancer-associated 
fibroblasts.8,9 Numerous previous studies show that the 
tumor microenvironment plays an important role in the pro-
gression and prognosis of multiple cancer types. Generally, the 
von Hippel Lindau (VHL) gene, a tumor suppressor, is typi-
cally inactivated in ccRCC, which results in the overexpres-
sion of HIF-2a and VEGF and promotes the progression of 
ccRCC. Therefore, anti-angiogenic agents (AA), targeting the 
VEGF pathway, such as the VEGF receptor (VEGFR) and 
tyrosine kinase inhibitors (TKIs), have been recently used for 
the therapy of patients with ccRCC.10 Moreover, the immu-
nogenicity of ccRCC has long been acknowledged. Several 
reports have examined the relationship between the existence 
of various immune cell types and patient prognosis.11–13 

Giraldo et al show that CD8+ T cell infiltration is substantially 
correlated with poor prognosis in patients with ccRCC, unlike 
in other cancer types.14 Therefore, some immunotherapies 
based on immune checkpoint inhibitors (ICI), such as anti- 
programmed death receptor 1 (anti-PD1), are used for some 
patients with cancer5 and produce perfect outcomes. However, 
targeted therapy, such as TKIs and ICI, produce a complete 
response in a limited number of patients and potentially exerts 
adverse effects among some patients with cancers.15 In several 
clinical studies, it has been reported that there remains 
a considerable proportion of patients with no response or 
resistance to immune checkpoint inhibitors or anti- 
angiogenic agents,16 implying that the assessment of several 
immune checkpoint genes expression alone is insufficient in 
immunotherapy for most malignancies due to the low accu-
racy of prediction.17 Roviello et al performed a meta-analysis 
and found that the efficacy of immune checkpoint inhibitors in 
PD-L1 negative expression patients is not satisfactory.18 

Therefore, it is necessary to detect novel immune-related 
targets for immunotherapy to elevate the efficacy of treatment.

Most previous studies have examined the role of 
immune cells in the progression and prognosis of cancers, 
however, they focus on the association between the immune 
cells and the prognosis of patients with cancers.9,19 With the 
advent of gene chips and high-throughput sequencing 

technologies, it is possible to have an in-depth understand-
ing of the genetic characters of the tumor immune micro-
environment through bioinformatic methods. Chen et al 
have identified prognostic immune genes in endometrioid 
endometrial adenocarcinoma by analyzing the high- 
throughput sequencing data using bioinformatic tools.20 

Tian et al have analyzed the tumor-infiltrating immune 
cells (TIICs) and identified prognostic immune cells in 
adrenocortical carcinoma using bioinformatics.21 In this 
study, we utilized the high-throughput sequencing data 
and clinical information of ccRCC specimens extracted 
from the public databases to conduct immune cell infiltra-
tion and survival analyses. The survival-related immune 
cells and immune-specific genes were selected following 
the survival analysis. Eventually, four categories of survi-
val-related TIICs and nine immune-specific hub genes were 
screened; these could be potential immunotherapeutic tar-
gets in ccRCC therapy.

Materials and Methods
Data Extraction and Processing
The workflow of this study is shown in Figure 1. The gene 
expression and corresponding clinical data were down-
loaded from public databases, Gene Expression Omnibus 
(GEO, https://www.ncbi.nlm.nih.gov/geo/) and the Cancer 
Genome Atlas (TCGA). In total, three ccRCC cohorts 
(TCGA-KIRC, GSE36895, and GSE53757) were analyzed 
in this study. TCGA-KIRC RNA sequencing data (count 
data) were downloaded from UCSC Xena (https://xenab 
rowser.net/datapages/), which consisted of 534 tumor- and 
73 adjacent normal tissue samples. GSE36895 included 29 
ccRCC tumor samples and 23 normal tissue samples.22 

GSE53757 included 72 ccRCC tumor samples and 72 
normal tissue samples.23 The information on patients 
from the selected ccRCC cohorts is shown in Table 1. 
This study design was reviewed by the ethics committee 
(Lanzhou University Second Hospital Ethics Committee) 
and deemed exempt for ethical approval.

Calculating the Abundance Ratio Matrix 
of Immune Cells
To assess immune infiltration in samples, we used the 
CIBERSORT algorithm, a tool for evaluating the immune 
cell composition in different organs based on their gene 
expression patterns.24 CIBERSORT source code and the 
LM22 gene signature were downloaded from the 
CIBERSORT website (https://cibersort.stanford.edu/down 
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load.php). The abundance ratios for 22 TIICs were calcu-
lated from the gene expression profiles of ccRCC by 
executing the CIBERSORT source code using the 
R software. The matrix of abundance ratio was visualized 
using the “barplot” function of R software and normalized 
using the “scale” function in R. The correlation between 
these TIICs was calculated using Pearson correlation 
through the “cor” function and visualized using the 
R package “corrplot”.25

Identification of Survival-Related Immune 
Cells and Grouping
To identify the survival-related immune cells from the 21 
cell types calculated through CIBERSORT, we performed 
the survival analysis. The R package, “survival”, was used 
to select the survival-related tumor-infiltrating cells from 
534 samples following the Kaplan–Meier (KM) analysis.26 

To filter the immune cells, the LASSO regression analysis 
was performed to select the significant survival-related 

TIICs using the R package, “glmnet”.27 Next, the selected 
survival related TIICs were used to perform multivariate 
Cox regression analysis and the risk score for each sample 
was calculated using the relative ratio of TIICs multiplied 
by the regression coefficient. Samples were divided into 
high-risk and low-risk groups determined using the med-
ian score as a cut-off. The Nomogram based on multiple 
Cox regression for TIICs and clinical traits was con-
structed using the R package, “rms”.28 Subsequently, 
a calibration plot and time-dependent ROC were used to 
evaluate the prognostic value of the TIICs using the 
R packages, “rms”28 and “timeROC”,29 respectively.

Examining the Relationship Between 
Tumor-Infiltrating Cells and Clinical 
Characteristics
To understand the role of the immune cell types in affecting 
the clinical characteristics, we compared the immune infiltra-
tion score for different clinical parameters. The relationship 

Figure 1 Flowchart of the study flow. CIBERSORT: an algorithm for analyzing the immune cell composition of complex tissues based on gene expression in those tissues.
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between the abundance ratio of immune cells and clinical 
characteristics, including tumor or normal tissue types, tumor 
grade, and clinical stage were analyzed using the Wilcoxon 
test. Next, we plotted the immune cells for various clinical 
characters using the “boxplot” package in R software.

Identification of Differentially Expressed 
Genes and Enrichment Analysis
To explore the differences between the high-risk group and the 
low-risk group, we performed the analysis of differentially 
expressed genes (DEGs) and evaluated their functional enrich-
ment. DEGs between the high-risk and low-risk groups were 
identified using the R package, “DESeq2”,30 with the cut-off 
set at P-value < 0.05 and |foldchange| > 1. Next, Gene ontol-
ogy (GO) enrichment and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analyses were performed using 
the R packages, “clusterProfiler31 and “org.Hs.eg.db”,32 with 
P-value < 0.05 set as the cut-off. Gene set enrichment analysis 
(GSEA) was performed using the GSEA function of the 
R package, “clusterProfiler”.31 The immunological signature 
gene set (C7 gene set) was selected as the reference for GSEA 
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp).

Construction of Protein–Protein 
Interaction Network and Identification of 
Hub Genes
To analyze the correlation among DEGs at the protein 
level, we constructed a protein–protein interaction (PPI) 

network for an in-depth understanding of these genes. The 
PPI network for the DEGs was constructed using the 
“STRING” plug-in in the Cytoscape software with 
a mutual score greater than 0.4 set as the threshold.33 

Next, the “cytoHubba” plug-in in Cytoscape v3.8.2 was 
utilized to identify the top 30 genes in the network as the 
central genes based on four algorithms, namely Edge 
Percolated Component (EPC), betweenness, closeness, 
and degree.34 The hub genes were obtained through the 
intersection of DEGs among the four algorithms.

Multidimensional Validation of Hub Genes
To examine the relationship between hub genes and clinical 
characteristics, we analyzed their expression in different 
clinical grades and pathological stages. The outcome was 
visualized using the R package, “ggpur”.35 The correlation 
between hub genes and the OS was calculated using the Log 
rank test using the R package, “survival”.26 Subsequently, 
a multidimensional validation was performed to reduce the 
false-positive rates for these hub genes using Gene 
Expression Profiling Interactive Analysis (GEPIA) (http:// 
gepia2.cancer-pku.cn/),36 UALCAN (http://ualcan.path. 
uab.edu/index.html),37 and the Human Protein Atlas 
(HPA) (https://www.proteinatlas.org/).38,39 Additionally, 
GSE3689522 and GSE5375723 served as the independent 
external datasets for the transcript-level validation of these 
hub genes. Finally, univariate and multivariate Cox ana-
lyses for these hub genes were used to examine their corre-
lation with the patient prognosis in ccRCC.

Table 1 The Information of Clinical Traits

TCGA Dataset GSE53757 Dataset GSE36895 Dataset

Case Percent Case Percent Case Percent

Normal 73 12% 72 50% 23 44.2%

Tumor 534 88% 72 50% 29 55.8%
Grade

G1 14 2.62% – – – –

G2 229 42.88% – – – –
G3 207 38.76% – – – –

G4 76 14.23% – – – –

Gx 5 0.94% – – – –
Unknow 3 0.56% – – – –

Stage

I 268 50.19% 24 33.3% – –
II 57 10.67% 19 26.4% – –

III 123 23.03% 14 19.4% – –

IV 84 15.73% 15 20.8% – –
Unknow 2 0.37% – –
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Relationship Between Immune Cells and 
Hub Genes
Herein, we performed a correlation analysis to assess the 
relationship between the hub genes and immune cells, 
which can be further understand these genes in immune 
infiltration. The Spearman correlation between the hub 
genes and 22 immune cell types was calculated using the 
R package, “psych”.40 The R package, “pheatmap”, was 
utilized to visualize the results of the correlation 
analysis.41 The Tumor Immune Estimation Resource 2.0 
(TIMER2.0) (http://timer.comp-genomics.org/) tool was 
utilized to validate the association between hub genes 
and immune cells.42

Statistical Analysis
In this study, groups of boxplots were analyzed using the 
Wilcoxon test. In the KM survival analysis, the P-value 
was estimated using Log rank tests, and the hazard ratio 
(HR) was calculated through the univariate Cox propor-
tional hazards regression analysis. All analyses were per-
formed in the R software version 4.0.3 (The R Foundation 
for Statistical Computing, 2020). All statistical tests were 
two-tailed; P-value < 0.05 was considered statistically 
significant.

Results
Infiltration Landscape of TIICs in ccRCC
The workflow of this research is shown in Figure 1. The 
information on these datasets is shown in Table 1. The abun-
dance ratio matrix of 22 tumor-infiltrating cell types was 
calculated for 534 samples using CIBERSORT locally and is 
shown in Figure 2A and B. The T cells and Macrophages 
exhibited high infiltration in ccRCC. Moreover, we found that 
the abundance ratios of several immune cell types had 
a significant correlation with each other (Figure 2C). Mast 
cell resting was significantly positively correlated with T cell 
CD4 memory resting (Figure S1A) and Monocytes (Figure 
S1B); T cell regulatory (Tregs) were negatively correlated with 
Mast cells (Figure S1C) and T cell CD4 memory resting 
(Figure S1D).

Identification of Survival Related TIICs
The results of the KM survival analysis indicated that 
there were eight immune cell types related to the OS of 
ccRCC, including Dendritic cells resting, Eosinophils, 
Monocytes, Mast cells resting, T cell CD4 memory rest-
ing, T cell CD4 memory activated, T cell regulatory 

(Tregs), and Mast cells activated (Figure 2D–K). Before 
multivariate Cox regression analysis, these eight immune 
cell types were identified through the LASSO regression 
analysis (Figure 3A and B). Following this, four types of 
immune cells, including T cells regulatory (Tregs), T cells 
CD4 memory activated, mast cells resting, and 
Eosinophils, were found to be possibly related to survival. 
The risk scores for each sample were calculated using the 
coefficients of the prior multivariate Cox regression ana-
lysis, which was as follows:

Risk score ¼ ∑
4

i¼1
βi � Fraci 

where Frac is the abundance ratio of selected immune 
cells, and β is the coefficient of the Cox regression.

Subsequently, based on the median risk score as the 
cut-off, the patients were divided into the high-risk and 
low-risk groups (Figure 3C). Figure 3D shows the survival 
status of the patients. Figure 3E shows the heatmap for the 
fraction of the four immune cell types. As shown, Tregs 
had high infiltration in the high-risk group, which was in 
line with the findings of survival analysis. The KM survi-
val analysis revealed that the high-risk group had a worse 
OS than the low-risk group, which confirmed that this 
classification was reasonable (Figure 3F). Then the nomo-
gram based on the multivariate Cox regression was con-
structed for the prediction of overall survival in ccRCC 
(Figure 3G). The calibration curve plot (Figure 3H) and 
time-dependent ROC analysis for the nomogram 
(Figure 3I) showed satisfactory discrimination and calibra-
tion of the signature, which further indicated that these 
four immune cell types were strongly associated with OS 
in ccRCC.

Relationship Between TIICs and Clinical 
Characteristics
We examined the relationship between immune cells and 
clinical traits, including tumor or normal tissue type, clin-
ical stage, and grade. The levels of T cells CD4 memory 
activated, T cells gamma delta, Macrophages M2, 
Dendritic cells resting, Mast cells activated, and 
Eosinophils were not significantly different in their infil-
tration in TCGA dataset (Figure 4A), and the finding was 
relatively consistent with those in the GSE53757 dataset 
(Figure 4B). The relationship between immune cells and 
grade in TCGA dataset is shown in Figure S2A; the 
relationship between immune cells and stage in TCGA 
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Figure 2 (A) The overview of tumor-infiltrating immune cells; (B) Heatmap of tumor-infiltrating immune cell abundance ratio; (C) The coefficient of relationship between 
the different specific immune cells; (D–K) The KM survival analysis for abundance ratios of different tumor-immune infiltrating cells.
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dataset is shown in Figure S2B. The GSE53757 dataset 
was utilized to validate the association between immune 
cells and the clinical stage, and the findings were consis-
tent with the results obtained in TCGA dataset (Figure 
S2C). The relationship between immune cells and clinical 
characters showed that the majority of immune cells 
exhibited differential infiltration in different clinical traits, 
in particular, several types of T cells showed significantly 

different infiltration across different stages and grades. 
These results demonstrated that the tumor immune micro-
environment was associated with the progression of 
ccRCC.

Identification and Enrichment of DEGs
The samples were separated into low-risk and high-risk 
groups to identify the survival-related DEGs in ccRCC, 

Figure 3 Identification of four prognostic immune cells. (A) The LASSO plot determines the number of OS-related genes in survival analysis via LASSO regression. (B) The 
Lambda plot determines the number of OS-related genes in survival analysis via LASSO regression. (C) The curve of risk score. (D) Survival status of the patients. The 
higher risk score corresponds to more proportion of dead patients. (E) Heatmap of the four prognostic immune cells relative score in low-risk and high-risk groups. (F) KM 
survival analysis of the high-risk group and low-risk group divided by the ratio of four types of immune cells. (G) The nomogram integrated ratio of four survival-related 
immune cells and clinical characteristics. (H) The calibration plot indicates an agreement test between predictions of OS for 1-year, 3-year, and 5-year survival and actual OS 
outcomes in TCGA dataset. (I) The time-dependent ROC curves for the nomogram based on immune cells and clinical traits in TCGA dataset.
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with the median risk score set as a cut-off value. In total, 707 
DEGs were identified with P-value < 0.05 and |foldchange| 
> 1 set as the threshold criteria. The detailed information of 
these DEGs is shown in Table S1. The volcano plot of DEGs 
is shown in Figure 5A. The results of GO enrichment and 
KEGG pathway analyses for these upregulated genes are 
shown in Figure 5B–E (Tables S2 and S3). Some enriched 
functions related to immune reactions and cytokines 
included T cell activation, cytokine-cytokine receptor inter-
action, and humoral immune response; these suggested that 
immune response and immune microenvironment may con-
tribute substantially to the classification of risk group. For 
further confirmation of the strong correlation of DEGs with 
immunological characteristics, gene set enrichment analysis 
(GSEA) for the immunological signature (C7 gene set) was 
performed and the immune functions of upregulated DEGs 

were analyzed; A total of 574 gene sets were significantly 
enriched (P < 0.05). The top 10 gene sets are shown in 
Figure 5F (Table S4). These gene sets were mainly corre-
lated with the T cell type infiltration, which implied that 
these DEGs were associated with immune infiltration.

Protein–Protein Interaction Network and 
Hub Genes
To further understand these DEGs, we constructed a PPI 
network using the“STRING” app in Cytoscape software. 
From the four algorithms in the cytoHubba plug-in, the top 
30 DEGs in each algorithm were used to create the protein 
interaction network (Figure 6A–D). These genes in the 
protein interaction network played essential roles in the 
occurrence and development of the disease. The intersection 

Figure 4 The abundance ratios of immune cells between normal tissue and ccRCC tissues. (A) The comparison of the immune cells between normal and tumor tissues in 
TCGA dataset. (B) The comparison of the immune cells between normal and tumor tissues in the GSE53757 dataset. ****P < 0.0001, **P < 0.01, *P < 0.05. 
Abbreviation: ns, not significant.
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of genes obtained from the four algorithms consisted of nine 
hub genes (Figure 6E), including APOE, CASR, CTLA4, 
CXCL8, EGF, F2, IL6, KNG1, and MMP9. The information 
of these nine hub genes is summarized in Table S5. The 

detailed results of the four algorithms are shown in Table S6. 
The hub genes consisted of several immune checkpoint 
inhibitor genes and cytokine genes, such as CTLA4, 
CXCL8, and IL6, which suggested that the method of 

Figure 5 Functional enrichment analysis of DEGs. (A) Volcano plot of differentially expressed genes between the high-risk group and low-risk group. Red nodes represent 
significantly upregulated genes with logFC > 1 and P < 0.05. Blue nodes represent significantly downregulated genes with logFC < −1 and P < 0.05. (B) Top 10 GO cellular 
component enrichment analysis of upregulated genes. (C) Top 10 of GO biological process enrichment analysis of upregulated genes. (D) Top 10 GO molecular function 
enrichment analysis of upregulated genes. (E) Top 10 KEGG enriched pathways of upregulated genes. (F) Top 10 among GSEA for upregulated genes. 
Abbreviation: logFC, log fold change.
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obtaining the immune-related hub genes was reasonable and 
these hub genes warranted further evaluation.

Validation of Hub Genes in Public 
Datasets
To further verify the correlation between the hub genes 
and clinical characteristics, their expressions according to 
different clinical traits were analyzed. CASR, CTLA4, 
EGF, F2, KNG1, and MMP9 were significantly differen-
tially expressed between normal and cancer tissue types 
(Figure 7A), which was validated in both the GEO data-
sets, GSE36895 and GSE53757 (Figure 7B and Figure 
S3C). The expressions of hub genes in GSE36895 were 
consistent with the results obtained in TCGA cohort. The 
expression levels of APOE, CTLA4, F2, IL6, and MMP9 
increased with the increase in clinical grade and patholo-
gical stage (Figure S3A and B), and this was validated in 
the GSE55375 dataset (Figure S3D). The Kaplan–Meier 
survival analysis showed that five hub genes, APOE, 
CTLA4, F2, IL6, and MMP9, were significantly associated 
with the OS (Figure 7C). GEPIA indicated that the expres-
sions of these hub genes at the genomic level were 

consistent with our results (Figure S4). The Human 
Protein Atlas showed immunohistochemically verified 
expressions of APOE, CXCL8, F2, IL6, and KNG1 in 
renal carcinoma (Figure 7D). UALCAN analysis for 
these hub genes at the protein level is shown in Figure 
S5, and the findings were consistent at the mRNA level. 
These results indicated that hub genes were associated 
with clinical characters and prognosis both at the mRNA 
and protein levels, which suggested that these genes con-
tributed to the development or progression of ccRCC.

Validation of Hub Genes in TCGA 
Dataset Using the Prognostic Signature
To verify the relationship between these candidate genes 
and OS in patients with ccRCC, both univariate and multi-
variate Cox analyses were performed. The univariate Cox 
regression analysis showed that all gene expressions were 
significantly correlated with the OS of patients with 
ccRCC, except for two genes, EGF and KNG1 
(Figure 8A). The multivariate Cox regression analysis for 
the seven genes showed that these genes were correlated 
with OS, and CASR (P < 0.05, HR = 0.9322) and CTLA4 

Figure 6 Establishment of PPI network. (A–D) The top 30 genes in the PPI network were identified as central genes using four algorithms: betweenness, EPC, closeness, 
and degree. (E) A Venn plot of a shared gene was obtained using four algorithms. 
Abbreviations: EPC, edge percolated component; PPI, protein–protein interaction.
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Figure 7 The expression of nine hub genes between normal tissue and tumor tissues in TCGA dataset (A) and GSE36895 dataset (B). (C) KM survival analysis of the nine 
hub genes. The expression of CTLA4, CXCL8, F2, IL6, and MMP9 is significantly correlated with overall survival. (D) Immunohistochemistry (IHC) of five genes in renal cell 
carcinoma and normal kidney tissue. ****P < 0.0001; *P < 0.05. 
Abbreviation: ns, not significant.
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Figure 8 The results of prognostic signature based on hub genes and clinical traits. (A) The forest plot of univariate Cox regression analysis for hub genes. (B) The forest 
plot of multivariate Cox regression analysis for hub genes. (C) Nomogram integrated nine immune-related genes and clinical traits. (D) The calibration plot indicates an 
agreement test between predictions of OS for 1, 3, and 5 years and actual OS outcomes in the TCGA dataset. (E–G) The time-dependent ROC curves for the nomogram 
and clinical trait model in TCGA dataset. (H–J) Decision curve analysis for the prediction of OS in 1-year, 3-year, and 5-year using the nomogram. The blue line indicates that 
there are no high-risk patients. The green line indicates that all patients are considered to be high-risk. The red line indicates that the nomogram can provide higher net 
benefits for accurately forecasting patient survival. **P < 0.01, *P < 0.05.
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(P < 0.01, HR = 1.1692) were independent prognostic 
factors for ccRCC patients (Figure 8B). The nomogram 
for the candidate genes and clinical traits, based on the 
multivariate Cox regression, was developed for prognostic 
prediction of ccRCC (Figure 8C), and the calibration curve 
showed strong discrimination and calibration power of the 
model (Figure 8D). Time-dependent ROC analysis demon-
strated that the AUC values of the nomogram were 0.853, 
0.806, and 0.777 for 1-year, 3-year, and 5-year, respec-
tively (Figure 8E–G); this indicated that the nomogram 
based on genes and clinical traits had a higher accuracy 
than the stage- and grade-based models. Decision curve 
analysis showed that the nomogram based on genes and 
clinical traits had greater benefits than the stage- and 
grade-based models when the threshold probabilities 
were set greater than 0.2 (Figure 8H–J). The evaluation 
of the Nomogram based on hub genes showed that they 
were well capable of predicting the prognosis in ccRCC, 
which indicated that these hub genes had a prognostic role 
in the ccRCC and deserve further analysis.

Relationship Between TIICs and Hub 
Genes
The relationship between hub genes and the TIICs is 
shown in Figure 9A, which demonstrated that the propor-
tion of TIICs was linked to several hub genes. For 
instance, the expression of CTLA4 was positively related 
to the infiltration level of T cell CD8 and T cell follicular 
helper, while negatively related to the abundance ratio of 
mast cell resting. The expression of MMP9 was positively 
related to the proportion of Macrophages M0. These find-
ings suggested that the hub genes may play a significant 
role in the function of the TIICs and are potential immu-
notherapy targets. Next, TIMER 2.0 was used to validate 
the correlation between hub genes and immune cells based 
on the XCELL algorithm (Figure 9B). The correlation 
estimated by XCELL was consistent with the result 
obtained using the CIBERSORT algorithm. The relation-
ship between immune cells and hub genes in the 
GSE53757 dataset was evaluated and it was consistent 
with the findings in TCGA dataset (Figure S6).

Discussion
ccRCC is the most common type of kidney renal cell 
carcinoma and accounts for the majority of kidney cancer- 
related deaths. In recent years, several studies show that 
immunotherapy is beneficial for patients with ccRCC,43–45 

however, the OS of patients with ccRCC remains unsatis-
factory. Therefore, pursuing novel immune-related genes 
as therapeutic targets is critical for the development of 
effective therapy for ccRCC. The purpose of this study 
was to identify the immune cell types and immune-related 
genes correlated with the prognosis of ccRCC. These 
findings provided potential novel immunotherapeutic tar-
gets for ccRCC.

In this study, four hub immune cells were identified, 
including T cells regulatory (Tregs), T cells CD4 memory 
activated, Mast cells resting, and Eosinophils. Tregs are 
responsible for regulating the basic balance of the adaptive 
immune response, adjusting function, and maintaining 
homeostasis in response to diverse tissue contexts and 
immunological circumstances.20,46 Giraldo et al show 
that ICOS+ Tregs can be used as a prognostic marker in 
localized ccRCC.47 Some previous studies also show that 
CD4+ T cells are upregulated and are significantly corre-
lated with OS in RCC.48–50 These previous results were 
consistent with our findings as a higher abundance ratio of 
Treg cells was identified in patients with worse OS. 
Nakanishi et al showed that mast cells played an important 
role in tumor growth, progression, and malignant aggres-
siveness of RCC tissues,51 which was consistent with our 
findings that the larger quantity of mast cells resting was 
associated with a better prognosis. These studies show, to 
some extent, that these four immune cell subgroups may 
be predictors of ccRCC prognosis. However, the abun-
dance ratio of eosinophils was low in the majority of 
samples, and therefore the conclusion for eosinophils 
should be analyzed with caution.

Functional enrichment was performed for the DEGs 
between the high-risk and low-risk groups. The biological 
processes associated with upregulated DEGs were 
enriched in T cell activation and humoral immune 
response. These results implied that immune-related upre-
gulated genes may be associated with the function of 
several T cell subtypes, which was also consistent with 
the findings in risk grouping based on immune cells. 
KEGG enrichment analysis demonstrated that most upre-
gulated DEGs were enriched in cytokine-cytokine receptor 
interaction, chemokine signaling pathway, IL-17 signaling 
pathway, T cell receptor signaling pathway, and NF-κB 
signaling pathway. According to the findings, these signal-
ing pathways played a crucial role in ccRCC. Previous 
studies have shown that cytokine-cytokine receptor inter-
action, chemokine signaling pathway, and IL-17 signaling 
pathway play significant roles in the proliferation, 
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epithelial-mesenchymal transition, immune evasion, and 
metastases of several cancer types.52,53 Therefore, the reg-
ulation of these DEGs and tumor microenvironment could 
impact the tumor progression and prognosis in ccRCC.

Nine hub genes were selected through four algorithms 
in the cytoHubba plug-in in Cytoscape, including IL6, EGF, 
APOE, KNG1, MMP9, F2, CTLA4, CASR, and CXCL8. In 
the early stages of the immune responses, CTLA4 is 
expressed on the surface of CD4+ and CD8+ cells.54 

CTLA4 binding reduces IL2 production and T cell 

proliferation.55 Some studies show that tumor cells can 
use the pathways regulated by CTLA4, including check-
point protein signaling, to create a microenvironment that 
permits tumor cell growth.56,57 Anti-CTLA4 antibodies 
(ipilimumab, tremelimumab) are now being tested in dif-
ferent clinical trials as putative immune checkpoint 
inhibitors.55 In 2007, the first clinical study on anti- 
CTLA4 agents in ccRCC was undertaken, which demon-
strated the efficacy of CTLA-4 inhibition in some patients 
with metastatic RCC.58 Thus, to a certain extent, the 

Figure 9 The correlation between hub genes and immune cells. (A) The Spearman correlation coefficients between hub genes and immune cells in TCGA database are 
presented on a heatmap. (B) The relationship between hub genes and immune cells via XCELL algorithm.
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analysis of identification of hub genes is justified and other 
hub genes are also valuable to an in-depth investigation of 
the tumor immune microenvironment. IL6 is a cytokine 
produced by the immune and some tumor cells and is 
related to tumor proliferation and metastasis.59,60 These 
results were consistent with our findings as IL6 was highly 
expressed in grade 4 and stage 4. IL6 is a key factor in the 
differentiation of CD4+ T cell subsets and is required for 
the formation of T follicular helper cells.61 The IL6 receptor 
antibody, tocilizumab, is used for the treatment of rheuma-
toid arthritis.55 These studies indicate that IL6 correlates 
with immune cells and processes, which were also validated 
by IHC of renal cancer samples. The Epidermal growth 
factor, EGF, belongs to the epidermal growth factor super-
family. This protein is a robust mitogenic factor that plays 
a significant role in the growth, proliferation, and differen-
tiation of numerous cell types.62 Polimeno et al show that 
EGF is a marker of host immunity in patients with renal cell 
carcinoma,50 which was also consistent with our findings. 
APOE is essential for the normal catabolism of triglyceride- 
rich lipoprotein constituents. Ostendorf et al demonstrate 
that APOE genotype is a biomarker for the outcome and 
therapeutic response in patients with melanoma.63 Tavazoie 
et al show that the APOE-associated axis regulates innate 
immune response suppression and plays an important role 
in enhancing the efficacy of cancer immunotherapy.64 

Taken together, APOE influences the prognosis of cancer 
patients and correlates with immune therapy. However, 
there have been only a few studies on the association of 
APOE as a novel therapeutic target and renal cell carci-
noma. A previous study also shows that MMP9 and CASR 
are hub genes significantly correlated with OS in ccRCC.6 

In summary, among these hub genes, several genes have 
already been investigated in clinical trials, for example 
CTLA4, indicating these genes are associated with cancer 
therapy. Therefore, some of hub genes were novel genes 
that deserve in-depth investigation in the tumor immune 
environment.

However, the present study has certain limitations. First, 
the data of high-throughput sequencing of samples were 
downloaded from UCSC Xena, which is a depository for 
TCGA. Immune infiltration investigations were not consid-
ered at the time that the samples were acquired. Consequently, 
patients with immune system illnesses were enrolled, which 
may have resulted in selection bias at the beginning of the 
trial. Second, these survival-related immune cells and hub 
genes were identified from TCGA database, where the major-
ity of patients are Americans or white. Considering the 

genetic heterogeneity, these immune cells and hub genes 
need to be validated in more public databases. Finally, this 
study lacks relevant in vivo and in vitro experiments to 
validate the functional roles of the identified hub genes.

Conclusion
In conclusion, four survival-related immune cell types and 
nine immune-related hub genes were identified using the 
CIBERSORT algorithm and regression analyses. 
Furthermore, these candidate hub genes were validated in 
clinical datasets and may also have implications as novel 
potential targets for ccRCC immunotherapy.
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